Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochem Cell Biol ; 2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2263432

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.

2.
Biophys Chem ; 276: 106610, 2021 09.
Article in English | MEDLINE | ID: covidwho-1252522

ABSTRACT

In the new millennium, the outbreak of new coronavirus has happened three times: SARS-CoV, MERS-CoV, and SARS-CoV-2. Unfortunately, we still have no pharmaceutical weapons against the diseases caused by these viruses. The pandemic of SARS-CoV-2 reminds us the urgency to search new drugs with totally different mechanism that may target the weaknesses specific to coronaviruses. Herein, we disclose a computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram, a 70-year-old anti-alcoholism drug, and predict a multiple-target mechanism. A preliminary list of promising TOS drug candidates targeting the two thiol proteases of SARS-CoV-2 are proposed upon virtual screening of 32,143 disulfides.


Subject(s)
Alcohol Deterrents/chemistry , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Disulfiram/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Alcohol Deterrents/pharmacology , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/metabolism , Disulfiram/pharmacology , Drug Repositioning , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Oxidation-Reduction , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Quantum Theory , SARS-CoV-2/enzymology , Substrate Specificity , Thermodynamics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL